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interpreted as hydrogen atoms, but others of comparable 
height could not, and the inclusion of hydrogen atoms was 
not thought to be justified. 

Atom coordinates are listed in Table 2, and observed and 
calculated structure factors in Table 3. A projection of the 
structure is shown in Fig. 2 and close intermolecular ap- 
proaches are listed in Table 4. 

Table 4. Close intermolecular contacts 

Atom 1 Atom 2 Vector to be applied Distance (A.) 
to atom 2 

C(2) 0(3) x, y + 1, z 3.48 
C(2) 0(4) S+x,  S - y ,  S+z  3.51 
C(3) 0(4) S+x,  S - y ,  S+z  3.30 
C(3) 0(3) S - x ,  S+y,  S - z  3.27 
C(7) 0(4) S - x ,  ½ + y -  1, S - z - 1  3.32 
0(1) C(6) x, y+  1, z 3.38 

Discussion 

The cell parameters for the juglone subcell are very similar 
to those for modification A of naphthazarin (formally 5,8- 
dihydroxy-l,4-naphthaquinone), and so is the manner of 
molecular packing. Fig. 2 is virtually identical (other than 
for the missing oxygen atom) with the corresponding 
packing diagram for naphthazarin (Fig. 17, Pascard-Billy, 
1962); similarly, the angle of inclination of the molecule to 
a is 21 "8 o for juglone, 23.6 °. for naphthazarin. The packing 
mode thus effectively ignores the fact that there is only one 
hydroxyl group in juglone, and a molecule oriented in the 
wrong sense, i.e, as if inverted through a centre at the mid- 
point of the bond C(9)-C(10), could fit without major 
intermolecular repulsion. The average structure corre- 
sponding to such disorder would be a centrosymmetric 
molecule with half-oxygen atoms attached to C(4) and 
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Fig. 2. The structure projected on to (100). 

C(8), which was the apparent structure deduced when only 
the data with h even were considered. 

Grateful acknowledgement is made of financial support 
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A method  of  fi t t ing a plane to a set of  points by leas t  squares .  By C. SCI-tERrNGER,* Institutfiir Kristallographie 
der Technischen Hochschule Aachen, Germany 

(Received 11 January 1971) 

The problem of finding the 'best' plane through a given set of weighted points has been solved in the past 
by resorting to eigenvalue procedures. It is shown that the solution can be given simply by using stan- 
dard least-squares routines. 

The problem of finding the 'best' plane through a given 
set of weighted points by least-squares methods has been 
discussed by Schomaker, Waser, Marsh & Bergman (1959) - 
hereafter referred to as SWMB. In the treatment given by 
these authors the plane is introduced in the form of a 
constraint and the solution is obtained by using the method 
of Lagrange multipliers. This approach finally involves the 
determination of the minimum eigenvalue of a 3 x 3 
symmetric matrix. Blow (1960) has proposed transforming 

* Present address: Institut ffir Kristallographie der Univer- 
sit,it Karlsruhe, Germany. 

the SWMB equations into an orthonormal metric, and 
Hamilton (1961) has discussed a more general weighting 
system. 

The SWMB treatment may be described as a 'direct' 
approach to a non-linear least-squares problem, which is 
solved by means of an eigenvalue determination. On the 
other hand every least-squares problem can be linearized 
and solved if approximate solutions, sufficiently close to 
the correct solution, are known. In the case of the 'best' 
plane approximate solutions can always be obtained by 
calculating the position of the plane from three points of 
the set. Thus it should be possible to find the 'best' plane 
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by simply using standard least-squares routines. Such an 
approach will be described in this paper. 

First we show that the 'best' plane passes through the 
centre of gravity of the set of given points with weights (or 
'masses') Wr, r =  1 • • .N .  We choose a Cartesian coordinate 
system X Y Z  as reference system in which the points may 
have the positions Xr. We assume that a 'best' plane in the 
least-squares sense exists and that its orientation has 
already been determined. We introduce a second Cartesian 
coordinate system U V W  such that the W axis coincides 
with the normal of the plane. Then we only have to deter- 
mine the point on the W axis where it is intersected by the 
plane. Let this point be described by the parameter Ws, 
then we have the least-squares condition 

wr (Wr-Ws)2---~ minimum. (1) 
r 

J W r  JW~ = 1, the solution o f ( l )  is Since -fi-l;V~- = 0 and J W~ 

m s = ~  wrmr/ ~ Wr. (2) 
r r 

Equation (2) means that the 'best' plane cuts the W axis at 
the W coordinate of the centre of gravity. Since the other 
two coordinates of the centre of gravity lie somewhere in 
the plane, we have proved that the plane passes through 
the centre of gravity. 

The second step consists in determining the orientation 
of the normal of the plane in the reference system. We 
choose the centre of gravity as origin of both the reference 
system X Y Z  and the system U V W .  We describe the ori- 
entation of the normal of the plane (W axis) by two 
Eulerian angles; they may be chosen to be 0 and 0 as used 
by Scheringer (1963) (the third angle ~a is set to zero). 
From Scheringer's (1963) table 1 the transformation of 
coordinates can be deduced as 

U~ = Xrcos 0 + Y~sin 0 sin 0 - Z ~ s i n  0 cos 0 ] 
V~ = Yr cos 0 + Zr sin 0 / (3) 
W~ = X~sin 0 -  Y~cos 0 sin 0 + ZrCOS CO COS 0.  

NOW the least-squares condition is 

Q = ~ w, W2--+minimum, (4) 
r 

where the W~ are functions of the two parameters 0 and 0 
as stated by equations (3). We put O=p~, O=p2 and derive 
from (4) 

JQ/Jp j  = 2 ~  wr mr (5 mr/(Spj : 0 ,  j = 1,2. (5) 
r 

There is no direct solution for the two equations (5), and 
a cyclic procedure, starting with trial values for 0 and O, 
must be used. The elements of the 2 x  2 matrix of the 
normal equations are 

6Wr J W r  
. . . . .  , 

ai.~ = Y'r w~ fip~- 6pl (6) 

and the right-hand sides are 

6Wr 
b~= - ~. w ~ W r - - ,  (7) 

r JPJ 

from which the shifts for pl and p2 can be calculated. The 
derivatives 6 Wr/fipj can easily be found from (3). 

The equation of the best plane expressed in coordinates 
of the reference system (origin at centre of gravity) is given 
by 

Xsin 0 -  Ycos 0 sin 0 + Z c o s  0 cos 0 = 0  (8) 

with the final values of 0 and 0. It can be seen from (8) that 
the relevant range for the two angles is either 0 ° < 0<  360 °, 
0o_<O_<90 °, or 0°<0_< 180 °, 0°-<0-< 180 °, or some other 
equivalent. For 0 = 90 ° a motion in 0 only transforms the 
plane into itself; thus the value of 0 is not relevant for this 
value of O. In actual computations 0 should be kept con- 
stant for 88 °_< 0-< 92 ° 

Computed refinements showed that the problem is 
nearly linear in the angle 0 over a range of about 20 °. The 
same holds for 0 when 0 = 0  °. For larger values of 0 the 
linear range in 0 decreases because 0 becomes less well 
defined (and undefined for 0=90°) .  We used trial values 
of 0 and 0 which deviated by 10 ° and 20 ° from the correct 
solution for 40 different solution points (0, 0). After one 
cycle the correct solution for the angle 0 was obtained 
within the limits of _+ 0-35 ° and + 1.48 o respectively. The 
stated limits are average values for the 40 different solution 
points. The same result holds for 0 when 0 = 0  °. For  an 
average of the 0 angles in the range 0°-< 0-< 80 ° the cor- 
responding error limits for 0 are 3"4 and 7.3 °. For deviations 
of more than 40 ° in 0 and 0 from the correct solution the 
computed shifts tend to become too large. Therefore we 
suggest keeping the shifts within the range of _+ 30 °. With 
this device proper convergence was always obtained in 5 
cycles or less for deviations of 60 ° from the correct solution 
in both angles. Even for the maximum possible deviation 
of 90 ° proper convergence was obtained in about 80% of 
the computed cases. In the program, as written for routine 
use, the following steps are performed: 

(1) The atomic parameters are transformed into Cartesian 
coordinates with the origin at the centre of gravity. 

(2) Trial values for the direction cosines of the normal of 
the plane [coefficients in equation (8)] are calculated 
from two atoms and the centre of gravity which are 
non-collinear. 

(3) Trial values for the angles 0 and 0 are calculated from 
the direction cosines. 

(4) 0 and 0 are refined in three cycles. 

The trial values for 0 and 0 are usually as close as 5 ° to the 
correct solution, and thus problems of convergence do not 
occur. 

The problem of determining the 'best' straight line 
through a set of weighted points allows the same type of 
solution. The line passes throagh the centre of gravity. 
If the direction of the 'best' line is denoted by the W axis, 
we have by analogy with (4) the least-squares condition 

~. w , ( U 2 +  V2)--,minimum, (9) 
r 

where Ur and Vr are functions of the two parameters 0 and 0 
as stated by equations (3). The normal equations follow 
accordingly. 

In order to show that the procedure described here gives 
the same solution as the SWMB treatment we shall ex- 
press both procedures in terms of the inertial tensor. 

We introduce an orthonormal metric in the SWMB 
equations and obtain for the elements of the matrix A 

Ail=~.  i i w r X r X  , , (10) 
r 

where i, j =  1, 2, 3 denote the three directions of space. The 
SWMB procedure amounts to finding the minimum eigen- 
value of A; its eigenvector points in the direction of the 
normal of the plane. According to SWMB this eigenvalue 

A C 27B - 13" 
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is equal to 
2~ l~= ~w~ W~, . (11) 

r 

where the W axis coincides with the normal of the 'best' 
plane. Since U~+ V~+ 2_ Wr --R~ is constant for every orien- 
tation of the Cartesian system, the relation 

I + A = E  Y. w,R 2 (12) 
r 

is valid, where I denotes the inertial tensor and E the unit 
matrix. From (12) it can easily be shown that I and A are 
diagonalized by the same transformation, thus we have the 
analogous relation for the eigenvalues 

2~r + 2~= Y.wrR 2 , i=  1, 2, 3.  (13) 
r 

With respect to the procedure described in this paper we 
first note that equation (4) is equivalent to searching for 
the maximum possible moment of inertia about the normal 
o f  the plane. Thus the normal of the 'best' plane is a prin- 
cipal inertial axis with moment (eigenvalue of the inertial- 
tensor matrix I) 

27 ax = Z w~( U~ + V~). (14) 

However, in the first instance we do not look for this 
eigenvalue but rather for the corresponding eigenvector, 
the principal axis of I. Then the eigenvalue 2~ aX (and hence 
) . ~ )  can easily be calculated from equations (3) and (14). 
(The other two eigenvectors - and eigenvalaes - are not 
determined since they are not relevant.) Thus both ap- 

proaches give the same result. In principle, the solution 
described here is of a simpler type; in practice, the diffe- 
rences in computation do not matter when using electronic 
computers. 

Note added in proof: - The program has also been found 
useful for constructing crystal drawings when used in the 
following way: The plane of projection has to be defined 
by three points. The weights of these points must be non- 
zero, whereas the weights of all other points (atoms) in 
the unit cell are set to zero. Then the positions of the atoms 
are given in the final output with in-plane coordinates U 
and V, and W coordinates normal to the plane. Since the 
plane of projection is defined by three points in the unit 
cell, it may not be a lattice plane. In this regard the pro- 
gram is different from that described by Minor & Dyson 
(1970); see also Buerger (1965). 

I am indebted to the Deutsche Forschungsgemeinschaft 
for financial support. 
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A procedure  for  represent ing  a r b i t r a r y  phase  probabi l i ty  dis tr ibut ions in a simplified form.  By WAYNE A. HEND- 
RtC~SON,* Laboratory for the Structure of  Matter, Naval Research Laboratory, Washington, D.C. 20390, U.S.A. 

(Received 2 November 1970) 

This note presents a least-squares method for fitting the phase probability distributions obtained in protein 
crystallography by the function P(a) = exp (K+ A cos a + B sin a + C cos 2a + D sin 2a). The method has been 
tested with data from crystals of lamprey hemoglobin. 

An alternative, and algebraically simplified, representation 
for the phase probability distributions used in protein 
crystallography has recently been described (Hendrickson 
& Lattman, 1970). It adds generality to the treatment of 
various types of phase information, affords computational 
advantages over the conventional functional forms and 
simplifies the combination of phase information from inde- 
pendent sources. It proved to be a convenient and useful 
aid in the structure analysis of lamprey hemoglobin (Hen- 
drickson & Love, 1971). Unfortunately, the new represen- 
tation required a reformulation of the error model for the 
isomorphous replacement method. This revision has been 
validated by experiment, but it nonetheless renders the 
new representation incommensurate with the formulations 
from other error models. Thus, unless computations are 
begun de novo, the advantages of the simplified form are 
lost to the structure analyses of the many proteins for which 

* A Resident Postdoctoral Research Associate of the Na- 
tional Research Council. 

phase probability distributions have been computed by 
other error models. The analysis of such structures might 
benefit if one could, cast the distributions at hand in the 
alternative representation. In particular, this would facili- 
tate the inclusion of additional phase information, such as 
from a partial structure or direct methods, in the refinement 
of atomic models. The close similarity of phase probability 
curves computed by the usual isomorphous replacement 
error models with those calculated by the new procedure 
(Hendrickson & Lattman, 1970) suggests that a good fit 
by the simplified representation should be possible. 

The problem, then, is to find the values of the parameters 
in the simplified representation, 

Pc(~) = exp (K+A cos ~ + B  sin ~+ C cos 2~+D sin 2~), (1) 

which provide a best fit to an arbitrary 'observed' phase 
probability distribution, Po(~). A least-squares minimi- 
zation of the direct discrepancy between Pc(~) and Po(~) 
leads to a set of non-linear normal equations which must 
be solved by iteration. However, logarithms of the probabi- 


